
The NIST Internet Time Service

Judah Levine
Joint Institute for Laboratory Astrophysics

National Institute of Standards and Technology
and University of Colorado
Boulder, Colorado 80309

Abstract

We will’describe the NZST Network Time Sewice which provides time and frequency information
over the internet. Our first time sewer is located in Boulder, Colorado, a second backup sewer is
under construction there, and we plan to install a third sewer on the East Coast lder this year.
The sewers are synchronized to UTC(NZST) with an uncertainty of about 0.8 m R M S and they
wiU respond to time requests from any client on the internet in several different formats including
the DAYTZME, TZME and NTP protocols.

The DAYTZME and TZME protocols are the easiest to use and are suituble for providing time
to PCs and other smuU computers. In addition to UTC(NZST), the DAYTZME message provides
advance notice of leap seconds and of the transitions to and from Daylight Saving Time. The
Daylight Saving Time notice is based on the US transition dates of the first Sunduy in April and
the lust cine in October. The NTP is a more complex protocol that is suitable for larger machines;
it i s normally run as a “damon” process in the background and can keep the time of the client to
within a few milliseconds of UTC(NZST).

We wiU describe the operating principles of various kinds of client software ranging from a
simple program that queries the sewer once and sets the local clock to more complex ‘hmon”
processes (such as NTP) thut continuously correct the time of the local clock based on periodic
calibrations.

Introduction to the Internet

The current iqternet is based on the ARPANET, a small network started in the 1960s and
originally funded by the Department of Defense. The network has grown dramatically in the
last decade and now connects thousands of sites worldwide. One of the important reasons for
the success of the network is its support for a group of relatively simple message protocols whose
structure is largely independent of the details of the underlying transmission medium. Two of
the most widely used protocols are the User Datagram Protocol (udp) and the Transmission
Control Protocol (tcp); both of these are in tum built on a common base called the internet
protocol (ip) and hence are usually referred to as udp/ip and tcp/ip.

An important concept supported by the internet protocols is that of a logical connection -
a connection between two processes on two different machines so that messages sent by one

505

are received by the other without either end-point needing to be concerned with the details
of the physical realization of the network or the topology of the intervening path. A machine
may have more than one of these logical connections active at the same time, with two
independent processes transmitting and receiving messages over the same physical connection.
This multiplexing requires a hierarchical address - both the source and destination addresses
must contain not only the address of the machine, but also some identification of the process
on the machine that is the source or destination of the messages. This end-point is usually
called a port, and i t is identified by a port number. A process that wishes to communicate
over the network must logically connect to the port to send and receive messages.

The protocols also support the concept of a server process - a process on a machine that
is continuously “listening” for connections and performs some action whenever a connection
request is received. There are often several such processes on any machine; they may each be
actively listening for connections or they may designate a super-server that listens on behalf
of all of them. The response is basically the same in either case - a request to a specific
port on the machine logically activates the server process that has advertised its willingness to
respond to that type of request. Once the server process has been activated, the communication
between it and the client proceeds transparently through all of the intervening layers in both
machines - both of them see the connection as if it was a dedicated physical circuit with
full-duplex capabilities.

If a server process is to be useful, the client must know which port it is listening to, since the
port number must form part of the request for service. A group of standard “well-known”
port numbers have been assigned to address this issue, and all machines on the internet are
expected to conform to these standard assignments. The mail-server, for example, is expected
to be listening for connections on tcp/ip port 25; other well-known services have similar port
assignments (Comer, 1991, pages 167 and 201).

Three ports have been assigned for time services. Port 13 is for the “daytime” service using
either the tcp/ip or udp/ip protocols; port 37 is for the “time” service using either tcp/ip and
udpiip protocols, and port 123 is for the Network Time Protocol (NTP) using udp/ip only.
This paper describzs a server whose time is synchronized to the NIST clock ensemble; i t will
respond in the appropriate format to time requests on any of these three ports from any client
on the internet.

Time Formats

In addition to defining a standard port number for each service, it is equally important to
define a standard message format. These formats are specified in a series of documents
called “Requests for Comments” or RFCs. The RFC documents are numbered sequentially in
chronological order; revisions to a protocol are usually assigned a new number so that many of
the lowered-numbered documents have been superseded and are obsolete. The RFC documents
are available in several formats from the Network Information Center (Comer, 1991, Appendix
1). The daytime protocol is specified in RFC-867, the time protocol is in RFC-868 and the
Network Time Protocol in several documents including RFC-1119, RFC-1128, RFC-1129 and
RFC-1305.

506

1. The Time Protocol

The time protocol is the simplest one to use. The server listens on port 37 and responds to
a request in either tcp/ip or udp/ip formats by replying with the time in UTC seconds since 1
January 1900. The response is an unformatted 32-bit binary number; the conversion to local
civil time (if necessary) is the responsibility of the client program. The 32-bit binary format
can specify times over a span of about 136 years with a resolution of 1 second; there is no
provision for finer resolution or for increasing the dynamic range. The transmitted time will
wrap-around through 0 in the next century and, if the protocol is still in use at that time, there
will be a 136-year ambiguity in the transmitted time thereafter.

The strength of this protocol is its simplicity - many computers connected to the internet
keep time internally as the number of seconds since 1 January 1970 (or sometimes since 17
November 1858) and a conversion between the received time and the internal format is a simple
matter of binary arithmetic. This strength must be balanced against several serious weaknesses:

a. There are two difficulties with the handling of leap seconds - a practical one of what
time to transmit at the leap second and a conceptual one of how to specify the time
afterwards. The choices depend on whether or not the clients are assumed to know
that a leap second is currently being inserted and whether they can remember all of the
previous leap seconds to correct the transmitted time afterwards. The simplest solution
is to adjust the time on both the server and the client at the time of the leap second,
which is equivalent to pretending afterwards that the leap second did not happen. This
raises difficulties when a client tries to compute the time interval between two epochs on
opposite sides of a leap second, but this difficulty is a generic one and is not limited to
computer clocks.

b. The protocol is awkward for machines that keep time internally as time of day plus the
date (PCs fall into this category) since the conversion of the received message to the
internal format in the client requires a full knowledge of the vagaries of the calendar and
the time-zone system and of the transitions to and from daylight saving time.

c. There is no provision in the message for additional information such as the health of
the server, and the protocol cannot be easily expanded without the risk of breaking the
software in some clients.

2. The Daytime Protocol

The daytime protocol has many of the advantages of the time protocol and addresses many of
its short-comings as well. The server listens on port 13 and responds to a request in either
tcp/ip or udp/ip formats by replying with the time and date as a line of text whose exact format
js not specified in the standard beyond the requirement that it be composed of human-readable
standard ASCII characters. We have chosen a format for the daytime service which conforms
to the very broad requirement of RFC-867 and which addresses many of the short-comings
that characterize the time format we have just discussed. Our message format is very similar to
the format used by our ACTS system (Levine et al., 1989). A typical message is shown below:

507

D L
MJD YY-MM-DD HH:MM:SS ST S H Adv.
49302 93- 11 - 11 17 : 30 :42 00 0 0 50.0 UTC(N1ST) *

The message consists of a single line of text; the identifying characters in the legend above
the line have been added here to show the significance of each field. The first number is
the Modified Julian Day. It is included for those systems that keep time as the number of
seconds since some epoch, since the conversion between a Modified Julian Day number and
such formats is a simple matter of binary arithmetic and does not require a knowledge of the
calendar. The next 6 numbers are the UTC date and time as shown by the legend and can be
directly understood by a human observer and easily used by machines that use the date and
time system internally. (Although this format can transmit the time during a leap second in a
natural way, I discuss below a number of reasons for not doing this.) The DST flag and LS flag
give advance notice of the transitions to and from daylight saving time and of the imminent
occurrence of a leap second, respectively. The format is the same as in the ACTS system:

If DST is 0, then the US is currently on Standard Time; if DST is 50 then the US is currently
on Daylight Saving Time. If DST is between 49 and 1 a transition from Daylight Saving Time
to Standard Time is imminent. The DST value is decremented at 0000 UTC every day and
the transition will arrive at 2 am local time when the counter is 1. If dst is between 99 and
51 a transition to Daylight Saving Time is imminent. The DST value is decremented at 0000
UTC every day and the transition will arrive at 2 am local time when the counter is 51.

If LS is 0 then no leap second is imminent. If LS is 1 then a leap second is scheduled to be
added after 235959 UTC on the last day of the current month. That second will be called
23:59:60, and the next second will be 0O:OO:OO of the next day. If LS is 2 then a leap second is
scheduled to be dropped at the end of the current month. The second following 235958 will
be 00:OO:OO of’the next day.

The server itself transmits UTC and therefore experiences no internal discontinuity during the
transitions to and from Daylight Saving Time, but there is likely to be a discontinuity during
a leap second. As pointed out above, there is an ambiguity in what to transmit during and
following a leap second depending on whether or not the client is assumed to know of its
existence and whether or not it knows how to parse a time of 23:59:60. After the leap second
has occurred, this ambiguity is resolved in the server by adjusting the time of the server and
pretending that the leap second did not happen. There are many reasons for making this
adjustment gradually by slewing the clock rather than suddenly by stepping it. This adjustment
will therefore take a finite time to complete, so that the time of the server may be ambiguous
while it is going on. The client software will face the same problem during leap seconds and
may also have a much larger version of it each Spring and Fall when Daylight Saving Time
starts and ends if its internal clock is set to local time rather than to UTC. The client, too,
must choose between slewing the clock and adjusting it in one step. The first alternative results
in a clock that is wrong for a significant period of time, and the second may play havoc. with
many of the time-dependent processes on the machine. Many implementations of the client
software choose the single-step alternative in both the leapsecond and Daylight-Saving-Time

508

situations; the leap-second adjustment could be implemented by parsing both 235959 and
23:59:60 as 235959.

The H parameter gives an estimate of the health of the time server, with a value of 0 indicating
fully healthy. Positive integers indicate increasingly poor health; both the magnitude of the
possible time errors and the uncertainty with which they are known increase as this parameter
increases from 0. Users who need the time with an uncertainty of less than 1 second should
not use the message if the health parameter is non-zero and those who need the time with an
uncertainty of 3 s or less should not use the message if the health parameter is greater than
+l. A value of +2 indicates a time error of up to 5 minutes and values greater than this
indicate an internal failure in which the time error may be small but cannot be determined.

The final parameter gives the time advance in milliseconds. The entire packet (not just the
terminating on-time marker) leaves the server early by this amount to compensate approximately
for the delay in the travel time through the internet. Within the continental US, travel times
on the internet range from about 30 ms to 150 ms, so that the packet is likely to arrive within
100 ms of the correct time anywhere in the US. This parameter is hxed at the present time
since our experience with ACTS indicates that this accuracy is sufficient for most users, but
future enhancements to the server software may estimate this parameter dynamically as is done
with ACTS at the present time.

The message ends with an asterisk for compatibility with the ACTS format, but this character
has no special significance as an on-time marker since the entire message will most likely be
transmitted and received as a single network packet. The time advance parameter applies to
the entire packet for this reason.

3. NTP - The Network Time Protocol

NTP is the most complex and sophisticated of the time protocols, and it can provide the
highest accuracy to a time client as a result. It normally runs continuously on the client as a
“dzmon” (background) process; it periodically queries the server and makes small adjustments
to the local time based on the data that it receives. The server responds to each query
with a packet in a special NTP format that is built on the udp/ip network protocol (Mills,
1991). The client software can also be configured to query several servers and to average
the responses in a statistically robust manner. In particular, it evaluates the response of each
server against the average and is prepared to consider the possibility that one of the servers
is broken. NTF’ must receive its calibration data via the noisy intemet, and it will be limited
by the un-modeled noise in the transmission medium. It is most likely to have problems at
intermediate periods of a few hours or so, because the internet noise in this period regime is
likely to have low-frequency divergences (which would appear in an Allan variance analysis as
Flicker or Random-Walk Frequency Modulations) that are difficult to estimate because they
are not amenable to improvement by averaging.

?

509

Server Synchronization

Our server was initially synchronized to UTC(N1ST) using periodic calls to the ACTS system.
We found that the time of the server could be kept within 0.8 ms RMS of UTC(N1ST) by
calling ACTS once every 3000 s. We are currently upgrading the server so that its clock is
phase-locked to a 1 pulse/s signal received directly from the clock room. This signal is stretched
to 125 s and is connected to the machine in such a way as to generate an interrupt every
second. These interrupts can initiate the phase-lock task which in turn adjusts the internal
clock so that its time is an exact even second. Periodic calls to ACTS are also scheduled, since
the phase-lock process cannot detect a slip of an integer number of seconds. This process can
keep the internal clock within 100 s RMS of UTC(N1ST). The improvement in the accuracy
and stability of the reference time of the server is unlikely to be noticed by the users, since
the uncertainty in the received time is dominated by the uncertainty in the travel time across
the network.

Both synchronization methods have advantages and disadvantages: the phase-lock system is
easier to implement but requires a direct 1 pulse/s signal; the ACTS system requires much
more complex software but can be used to implement a stratum-1 clock anywhere a telephone
line is available. We plan to use both of these methods in the future in constructing additional
time servers. This could greatly reduce the jitter due to the network delay for many users since
the distance between them and a server would be much smaller.

Access to the Server

Our primary network time server is named time-a.timefreq.bldrdoc.gov, and its internet address
is 132.163.135.130. A backup server named time-b.timefreq.bldrdoc.gov is being constructed;
its address is 132.163.135.131. The times of both servers will be synchronized to UTC(N1ST)
using the phase-lock method we have outlined above.

We have written example software that can be used to set or check the time of a client
machine by parsing the "daytime" format response of the server. The client software includes a
routine to convert the received message to local time, if necessary; conversion to daylight saving
time is also supported. This software can be adapted to run in most software and hardware
environments, requiring only a network connection and standard interface software to send and
receive messages on the internet. It provides a time capability similar to the ACTS system (but
at lower accuracy) without the need for making toll calls. The example software is publicly
available via anonymous ftp from the primary network time server in directory /pub/daytime.
Both the source code and the documentation are in this directory.

We have also written example software to access the time service, but this service provides
less information than the daytime service with no appreciable increase in accuracy, and we do
not recommend its use. This service is often used by time programs that are supplied with
commercial network software for PCs. These programs usually require external environmental
information to specify the time-zone of the user and what to do about daylight saving time.
Examples of how to specify this information are in the documentation in the directory specified
above.

510

The software for the Network Time Protocol is widely available, and is often bundled with the
operating system itself. It is normally distributed in source code with instructions for how to
build it for many different environments.

Conclusions

The NIST Network Time Service provides time information to internet users that is directly
traceable to UTC(N1ST). The information is provided by a time-server !ocated in Boulder; the
server will respond to requests for time in several different formats. The simpler formats are
well suited to the needs of small computers with modest accuracy requirements, while the more
complex formats can provide substantially better accuracy at a substantial increase in both the
size and complexity of the client software.

One of the synchronization algorithms wc have developed for the server itself uses periodic
calls to our ACTS service to synchronize the time of the server; i t could be used to construct a
stratum-1 time-server needing only a standard voice-grade telephone line for synchronization.
This server might be connected to a local network that is disjoint from the intemet or it might
be used as a stand-alone machine wherever accurate time-stamps are required.

Acknowledgements

I am grateful to David Mills of the University of Delaware, the designer of NTP, for many
helpful discussions. This work is supported in part by grant NCR-9115055 from the National
Science Foundation through the University of Colorado.

References

Comer, Douglas E., 1991. “Intei.iaetworki.rig with TCP/IP”, Volume 1, Second Edition.
Englewood Cliffs, New Jersey, Prentice Hall.
Levine, J., M. Weiss, D. D. Davis, D. W. Allan and D. B. Sullivan, 1989. “The NIST
Automated Computer T ime Srriice”, J. Res. of the Natl. Inst. Stand. Tech., 94,

Mills, David L., 1991. ((I n t e m r t Time Synchronization,: The ,Vetulork Time Protocol)’,
IEEE Trans. Communications, 39, 1482-1493.

3 11-321.

3

511

